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Data sharing among multiple sampling tasks significantly reduces energy consumption and communication
cost in low-power wireless sensor networks (WSNs). Conventional proposals have already scheduled the
discrete point sampling tasks to decrease the amount of sampled data. However, less effort has been expended
for applications that generate continuous interval sampling tasks. Moreover, most pioneering work limits
its view to schedule sampling intervals of tasks on a single sensor node and neglects the process of task
allocation in WSNs. Therefore, the gained efforts in prior work cannot benefit a large-scale WSN because the
performance of a scheduling method is sensitive to the strategy of task allocation. Broadening the scope to an
entire network, this article is the first work to maximize data sharing among continuous interval sampling
tasks by jointly optimizing task allocation and scheduling of sampling intervals in WSNs. First, we formalize
the joint optimization problem and prove it NP-hard. Second, we present the COMBINE operation, which is
the crucial ingredient of our solution. COMBINE is a 2-factor approximate algorithm for maximizing data
sharing among overlapping tasks. Furthermore, our heuristic named CATS is proposed. CATS is 2-factor
approximate algorithm for jointly allocating tasks and scheduling sampling intervals so as to maximize data
sharing in the entire network. Extensive empirical study is conducted on a testbed of 50 sensor nodes to
evaluate the effectiveness of our methods. In addition, the scalability of our methods is verified by utilizing
TOSSIM, a widely used simulation tool. The experimental results indicate that our methods successfully
reduce the volume of sampled data and decrease energy consumption significantly.
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1. INTRODUCTION

The successful applications of low-power wireless sensor networks (WSNs) under dif-
ferent scenarios, such as earthquake monitoring [Suzuki et al. 2007], railway diagnosis
[Cerullo et al. 2005], wildlife protection [Szewczyk et al. 2004], and structure monitor-
ing [Xu et al. 2004], are time consuming and labor intensive. They are all constrained
by scarce resources, such as power, memory, and computation. Moreover, the experience
of some real projects [Mo et al. 2009; Jiang et al. 2009; Mao et al. 2012] shows that
the lifetime of a deployed network is constrained for several months without recharg-
ing. This phenomenon is extremely severe when data-intensive applications generate
a large set of sampling tasks and need extensive sampled data.

Such data-intensive applications widely exist in monitoring systems. For example,
acoustic data is collected to diagnose the state of a railway system [Cerullo et al.
2005]. The vibration data, sampled by volcano, earthquake, and structure monitoring
systems [Tan et al. 2013; Suzuki et al. 2007; Xu et al. 2004], needs to be sampled to
detect the anomaly. A further example is that observed data in a wildlife monitoring
system can be used to conduct scientific analysis on animals’ behavior [Szewczyk et al.
2004]. As illustrated in Figure 1(b), these applications first generate a large amount of
sampling tasks. Then, those sampling tasks will be allocated to certain sensor nodes
by a sink node (as indicated by the solid line). Finally, the collected sensor readings
are transmitted to the sink node (as indicated by the dotted line) and then are fed into
aforementioned applications.

Generally, such a sampling task can be defined as a task model by using two prop-
erties: time window and sampling interval, meaning a period of time. As illustrated in
Figure 1(a), the time window relates to the lifetime of a sampling task. The sampling
interval indicates that this task should be performed to sample data over the time
interval continuously. Universally, sampling tasks can be classified into two cases: dis-
crete point sampling tasks and continuous interval sampling tasks. The former is the
special case of the task model. Such a discrete point sampling task requires a wireless
sensor node to sample data once during the period. The latter is a general case. In
other words, a continuous interval sampling task must be performed over a time in-
terval continuously. Moreover, the sampling interval of a continuous interval sampling
task can be adjusted to move in its time window flexibly. In this article, we focus on the
latter (i.e., continuous interval sampling tasks).1

Note that the time window of more than one sampling task may have overlapping
time regions. The sampling intervals of those tasks can be adjusted in the overlapping
regions of time. Data, which is sampled in such overlapping regions once, can be shared
by multiple tasks simultaneously. As illustrated in Figure 1(a), consider three sampling
tasks t1, t2, and t3. Since the time window of t2 and t3 are overlapping, the sampling
intervals of t2 and t3 can be adjusted in the overlapping time region so that data sampled
in the region of data sharing can be shared by t2 and t3. Such a strategy of data sharing is
very practical to reduce redundant data sampling and improve the efficiency of WSNs.
Moreover, this strategy is extremely important for interval sampling tasks. First, an
interval sampling task usually produces a large amount of sampled data each time.
Without such a data sharing strategy, delivering those superfluous sampled data to the
sink node will consume more network resources. Second, the execution of unnecessary
data sampling and the transmission of redundant sampled data consume nontrivial
energy of the sensor node.

1For simplicity, the terms interval sampling tasks, sampling tasks, and tasks are hereafter termed continous
interval sampling tasks without difference.
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Fig. 1. Illustrative examples for the schedule of sampling intervals in the left panel and the allocation of
tasks in the right panel.

Generally, given a set of tasks, the benefits of data sharing among those tasks are
dominated by the task allocation as well as the schedule of sampling intervals. The
time window of tasks may overlap when more than one task is allocated to a same
sensor node. Accordingly, the sampling intervals of those tasks should be scheduled
into the overlapping regions so as to maximize the gain of data sharing. Both the task
allocation and the scheduling method of sampling intervals are tightly coupled. The
strategy of task allocation has a great impact on the performance of the scheduling
method sampling intervals. If the time window of sampling tasks allocated to a sensor
node are not overlapping, the method of scheduling sampling intervals cannot exploit
data sharing to reduce redundant data sampling. If the scheduling method sampling
intervals is not optimal, each sensor node will still produce redundant sampled data.
The goal of maximizing data sharing for the entire network cannot be realized. There-
fore, exploiting the benefits of data sharing involves two challenges for WSNs. The first
is the allocation strategy of sampling tasks over the entire WSN. The second is the
schedule of sampling intervals for a set of tasks that have been allocated to a sensor
node. To ease the presentation, we introduce Figure 1 as an illustrative example for
the two subproblems:

—Task allocation: As demonstrated in Figure 1(b), consider three sensor nodes s0, s1,
and s2 in a WSN. Here, s0 is the sink node responsible for allocating sampling tasks
to s1 and s2. A data-intensive application injects three sampling tasks t1, t2, and t3
into the network, as shown in Figure 1(a). If t1 and t2 have been allocated to s1 and s2,
respectively, then t3 should be allocated to s2, because the time window of t3 and that
of t2 are overlapping and the sampling interval of t3 and that of t2 can be adjusted
to implement maximal data sharing. Consider that extensive data-intensive appli-
cations generate a large set of sampling tasks. It is extremely difficult to allocate
tasks so as to maximize data sharing with a resource-constrained sensor node.

—Task scheduling: As illustrated in Figure 1(a), consider three sampling tasks t1, t2,
and t3 that have been allocated to a same sensor node. Since the time window of t2
and t3 has a maximal overlapping time region, sampling intervals of t2 and t3 can
be adjusted to achieve maximal data sharing when data is sampled in the overlap-
ping time region. The problem of scheduling sampling intervals is NP-complete (see
Corollary 3.14 in Section 3.4). Consider that a sensor node may be allocated

ACM Transactions on Sensor Networks, Vol. 12, No. 4, Article 29, Publication date: September 2016.



29:4 Y. Zhao et al.

numerous sampling tasks in a monitoring system. It is difficult to solve the schedul-
ing problem in polynomial time with a resource-constrained sensor node.

Although the scheduling problem of sampling intervals has been studied in Dalvi
[2014], Tavakoli et al. [2010], and Fang et al. [2013], prior methods face at least two
weaknesses. First, most existing work focuses on the discrete point sampling tasks. The
continuous interval sampling tasks cannot benefit from these achievements directly.
Second, existing work about the interval sampling tasks focuses only on the scheduling
problem on a single node. The proposed effective scheduling method does not work well
in WSNs due to lack of a task allocation procedure, primarly because the performance
of a scheduling method is dominated by a strategy of task allocation at the scope of the
entire network. We consider and formulate the two problems as a whole and provide a
general and practical solution for a deployed system. To the best of our knowledge, this
article is the first work that jointly optimizes both allocation and scheduling problems
in a large-scale WSN.

In this article, we focus on maximizing the benefits of data sharing among sam-
pling tasks, bearing the view of an entire WSN rather than a single sensor node. Our
contributions are outlined as follows:

—We formulate the allocation and scheduling problems as a joint optimization problem
under the k-coverage and r-redundant network model. The optimization problem is
proved to be NP-hard.

—We present a crucial ingredient of our solution COMBINE, which aims to compute
the minimal volume of sampled data for a set of overlapping tasks. The rigorous
approximation bounds of COMBINE are presented theoretically.

—We propose our solution named CATS, which jointly allocates tasks and schedules
the sampling intervals of the tasks on a sensor node to achieve maximal data sharing
for WSNs. CATS is proved to be a 2-factor approximate algorithm theoretically.

—To evaluate the performance of our method, we conduct empirical study using a real
testbed containing 50 nodes in the form of a 5×10 array. Large-scale simulations are
further conducted to evaluate our methods via TOSSIM, a widely used simulation
tool for WSNs. The evaluation results indicate that our method significantly reduces
the amount of sampled data and energy consumption, and thereby improves the
quality of communication in WSNs.

The rest of the article is organized as follows. Section 2 outlines related work and
points out the difference between our method and previous work. Section 3 defines the
basic models of a network and a sampling task, and then formalizes the optimization
problem. Section 4 presents the crucial operation (i.e., COMBINE) and gives a rigorous
approximation bounds theoretically. Section 5 proposes the solution (i.e., CATS) for
the joint optimization problem. Section 6 evaluates the performance of our proposal
through extensive experiments. Finally, Section 7 further discusses our solution, and
Section 8 concludes this work.

2. RELATED WORK

2.1. Energy-Aware Task Allocation and Scheduling Mechanisms in WSNs

Xu et al. [2010] propose an energy-balanced method of task allocation that implements
the maximal energy dissipation among all sensor nodes. The tasks are executed during
the beginning of each epoch and must be completed before the end of the epoch (i.e., the
epoch of a task is same as the time window of the task model in the article). It is
noted that tasks in Xu et al. [2010] are communication tasks, not ampling tasks. The
difference dominates that the proposed method in Xu et al. [2010] does not suit our
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problem. Additionally, the solution for solving an integer linear programming problem
in Xu et al. [2010] costs a great deal of time, which is prohibitive for a large system.
Packets in Song et al. [2006] own the same properties of a sampling task that we discuss
in this article. The release time and the deadline of a packet represent the begin and
end time, respectively. The difference is that a packet reports one unit of data, not the
data sampled over a time interval continuously. Thus, the methods in Song et al. [2006]
work well for discrete point sampling tasks, not interval sampling tasks.

The most related works to ours are that of Tavakoli et al. [2010] and Fang et al.
[2013]. Tavakoli et al. [2013] present an approach for task scheduling on a sensor node
to minimize network communication overhead. A task in their work is a discrete point
sampling task, that is, such a task requires a node to sample data once during its
time window. However, the task defined in our problem requires a node to continuously
sample data during an time interval. Therefore, their method does not suit our prob-
lem. Fang et al. [2013] propose an effective sampling approach for interval sampling
tasks on a single sensor node. The 2-factor approximation algorithm in their work is a
state-of-the-art method to maximize data sharing among tasks on a single node. Un-
fortunately, there are two weak points in this approach. First, the proposed scheduling
method schedules sampling tasks in the descending order of the end time of a task,
which, as a result, neglects data sharing between overlapping tasks. Moreover, the au-
thors assume that all sampling intervals of tasks have a same length, which is too ideal
and not practical. By contrast, we observe that multiple tasks may be overlapping, and
thereby data sharing exists. Our solution exploits this information by designing a cru-
cial operation, namely COMBINE, which achieves better performance in maximizing
data sharing than the scheduling method in Fang et al. [2013]. Second, the solution
in Fang et al. [2013] only focuses on task scheduling on a single sensor node and does
not consider the process of task allocation in a WSN. As discussed, the performance
of algorithms of task scheduling is sensitive to the strategy of task allocation. Our
solution is more general and practical because of jointly optimizing the process of task
allocation and that of scheduling sampling intervals.

2.2. Multiquery Optimization in a WSN

Recently, a WSN was treated as a database providing a good logical abstraction for
sensor data management. Multiquery optimization in such a database system stud-
ies how to efficiently process queries [Xiang et al. 2007; Trigoni et al. 2005]. Xi-
ang et al. [2007] adopts a two-tier multiple query optimization scheme to minimize
the average transmission time in WSNs. The first-tier optimization is a cost-based
approach that schedules queries as a whole and eliminates duplicate data requests
from original queries. Since it is not the optimization of the volume of sampled data,
such an approach cannot be used for our problem. Moreover, the second-tier optimiza-
tion acquires and transmits sampled data by using the broadcast nature of the radio
channel. Our solution aims to provide a general solution for maximizing data sharing
among sampling tasks. The details of wireless communication is not involved in our
method. Trigoni et al. [2005] consider multiquery optimization by using aggregation
operations such as sum and avg to achieve optimal communication cost, whereas our
method mainly concerns minimal energy consumption by reducing redundant sampled
data.

2.3. Compression Technique–Based Data Collection

Compression technique–based data collection significantly reduces redundancy of sam-
pled data for a sensor node [Arici et al. 2003; Pradhan et al. 2002]. Arici et al. [2002]
propose an in-network compression scheme (PINCO) for a densely deployed WSN.
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Fig. 2. Task and network models for the interval data sampling.

PINCO compresses raw data by reducing redundancy existing in sensor readings in
spatial, temporal, and spatial-temporal domains [Arici et al. 2003]. Unfortunately,
PINCO trades higher latency for lower energy consumption due to the process of data
compression. Such weakness limits its effectiveness in some latency-aware applica-
tions. By contrast, our solution does not cost time to analyze and compress the raw
data. Moreover, PINCO only considers the single-valued data (humidity, temperature,
etc.). Since single-valued data is produced by the discrete point sampling tasks, meth-
ods in Arici et al. [2003] cannot be used to solve our problem directly. Using fast
error-correcting coding algorithms, Pradhan et al. [2002] present a framework on the
distributed source coding technique to reduce data redundancy. However, the method
of Pradhan et al. [2002] requires one to know the sensor correlation structure. Doing so
was impossible for a randomly deployed system such as a battlefield monitoring system.

3. PRELIMINARIES

In this section, the basic task and network models are first formalized. We characterize
the task allocation and the schedule of sampling intervals as a joint optimization
problem. Then, we define a dedicated metric for measuring the data sharing. Finally,
we prove that the joint optimization problem is NP-hard.

3.1. The Joint Optimization Problem

Definition 3.1 (Interval Sampling Task). An interval sampling task t is defined as
a triple <b, e, l>, where b, e, and l represent begin time, end time, and length of the
sampling interval of the task, respectively. The time window is denoted by [b, e]. The
sampling interval can flexibly move in the time window. In other words, the sampling
interval can select its beginning time in the time window as long as its end time does
not exceed e. The point sampling tasks are the special case when such a point sampling
task can be performed by sampling data only once during its time window.

As illustrated in Figure 2(a), there are two overlapping tasks t1 = <b1, e1, l1> and
t2 = <b2, e2, l2>. The sampling interval I satisfies the requirements of two tasks, but
its interval length is smaller than the sum of the length of I1 and I2 due to the data
sharing between t1 and t2.
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Table I. Symbols List

Symbol Notation Symbol Notation
t Task n Cardinality of T
T Task set m Cardinality of S
s Sensor node b Begin time
S Sensor node set e End time
I Interval | · | Cardinality of a set
� Interval set xij Indicator variable

l, |I| Interval length d(ti, tj ) Value of data sharing
δ Same length of interval used in a compact model
ϕ Number of compact tasks in a compact model
tij Novel task generated by combining ti and tj

k Task can be executed by k sensor nodes
r Task is actually performed by r sensor nodes

Definition 3.2 (k-Coverage and r-Redundant Network). A WSN can be represented
by <S, T , k, r>. Here, S and T denote the node set and the task set, respectively. k
means that a sampling task in the network is detected by k sensor nodes, whereas only
r of them are identified to execute the task.

For a k-coverage and r-redundant network, k is determined during the deployment
of a WSN. Additionally, the setting of r can be adjusted according to the requirement of
an application. In this article, we consider the case that k and r are determined after
the deployment of a WSN. As illustrated in Figure 2(b), consider a WSN that consists
of three sensor nodes s1, s2, and s3. Each of them has a sensing range (indicated by the
dotted circle). Although the task t0 can be detected by three sensor nodes (i.e., k = 3),
it is eventually assigned to two sensor nodes (i.e., r = 2) to guarantee the requirement
of the application.

Before presenting the joint optimization problem, we first formalize the problem
of task allocation and the problem of scheduling of sampling intervals. To ease the
description, Table I outlines symbols frequently used throughout the article.

Definition 3.3 (Overlap). There are two sampling intervals I1 and I2. They are
overlapping if and only if I1 ∩ I2 �= ∅. Similarly, tasks t1 = <b1, e1, l1> and t2 =
<b2, e2, l2> are overlapping if and only if their time windows are overlapping. In other
words, their time windows [b1, e1] and [b2, e2] have a common time region.

As illustrated in Figure 2(a), the tasks t1 and t2 are overlapping due to the common
time region [b2, e1]. Similarly, their sampling intervals I1 = [u1, v1] and I2 = [u2, v2] are
overlapping because of the common time region [u1, v1]. Assume that u = min{u1, u2},
v = max{v1, v2}, and v1 ≥ u2; we define a novel interval I as the union of I1 and I2 (i.e.,
I = I1 � I2 = [u, v]) and its length l = v − u. Here, “�” stands for the union operation of
two intervals.

Definition 3.4 (The Allocation of Tasks). Given a task t and a sensor node set S, the
task set that has been allocated to the sensor node s, s ∈ S is denoted by T s

s∈S. The
optimization problem of allocating t to one of sensor node in S can be defined as follows:

min

∣∣∣∣∣∣
⊎

ti∈{t} ⋃
T s

s∈S

Ii

∣∣∣∣∣∣ −
∣∣∣∣∣∣

⊎
ti∈T s

s∈S

Ii

∣∣∣∣∣∣ (1)

such that: Ii ⊆ [bi, ei], i = 1, . . . , n;
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Definition 3.5 (The Schedule of Sampling Intervals). Given a task set T with |T | = n,
the optimization problem of scheduling sampling intervals of tasks in T is defined as
follows:

min

∣∣∣∣∣∣
⊎
ti∈T

Ii

∣∣∣∣∣∣ (2)

such that: Ii ⊆ [bi, ei], i = 1, . . . , n;

Definition 3.6. Given a sampling interval I and a 0 − 1 indicator variable xij . If a
task ti is allocated to a node sj , then xij = 1, else xij = 0. We define xij 
 I as follows:

xij 
 I =
{

I : xij = 1
∅ : xij = 0

. (3)

Definition 3.7 (The Joint Optimization Problem). Given a task set T with |T | = nand
a sensor node set S with |S| = m, a task ti, ti ∈ T , is notated by a triple <bi, ei, li>. Since
r out of k candidate sensor nodes are identified to perform the task ti, the optimization
problem is defined as follows:

min
m∑

j=1

∣∣∣∣∣
n⊎

i=1

xij 
 Iij

∣∣∣∣∣ (4)

such that: ⎧⎪⎨⎪⎩
∑m

j=1 xij = r, i = 1, . . . , n, 1 ≤ r ≤ k;
xij = 0 or 1;
Iij ⊆ [bi, ei], i = 1, . . . , n;

(5)

When r = k, we should allocate each task to all candidate sensor nodes. The solution
of task allocation is determined solely. Generally, when 0 < r < k, the object function
is nonlinear, which makes the optimization problem become difficult. This kind of
nonlinear programming problem has no universal efficient solution. Several methods,
including branch and bound techniques, require high computational complexity and are
not applied to a WSN. Considering the limitation of computing and memory resources
of sensor nodes, the nonlinear programming problem becomes difficult to solve. To ease
the description, Table I summarizes the major symbols in this paper.

3.2. Measurement of Data Sharing Between Overlapping Tasks

Data sharing among tasks is the foundation of our solution. We aim to minimize
the total amount of sampled data by exploiting data sharing among them. Before
presenting our method, we first demonstrate some basic definitions that are used to
measure data sharing among overlapping tasks.

Definition 3.8 (Satisfy). Consider two overlapping tasks ti = <bi, ei, li> and
tj = <bj, e j, lj>. We define two variables b and e such that b = max{bi, bj} and
e = min{ei, e j}. Given l∗i = min{li, e − b} and l∗j = min{lj, e − b}, ti satisfies tj if and
only if l∗i ≥ lj , and tj satisfies ti if and only if l∗j ≥ li.
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Fig. 3. Three cases: the combination of overlapping tasks.

Definition 3.9 (Data Sharing). Let d(ti, tj) denote the maximal value of data sharing
of two tasks ti and tj . Without loss of generality, assume that ei ≤ e j , then

d(ti, tj) =
{ ei − bj : ti, tj cannot satisfy each other.

lj : ti satisfies tj .
li : tj satisfies ti.

(6)

Definition 3.10. Consider overlapping tasks ti = <bi, ei, li> and tj = <bj, e j, lj>. Sort
those tasks in the descending order of end time. Without loss of generality, assume that
ei ≤ e j . Then a time window [b∗, e∗] can be constructed as follows:

—If ti and tj cannot satisfy each other, then{
b∗ = ei − li
e∗ = bj + lj

. (7)

—If ti satisfies tj , then{
b∗ = max{bi, b − (li − lj)} b = max{bi, bj}
e∗ = min{ei, e + (li − lj)} e = min{ei, e j} . (8)

—If tj satisfies ti, then{
b∗ = max{bj, b − (lj − li)} b = max{bi, bj}
e∗ = min{e j, e + (lj − li)} e = min{ei, e j} . (9)

Definition 3.11 (Combination). A novel task tij is the combination of overlapping
tasks ti and tj . For simplicity, tij is denoted by t∗ = <b∗, e∗, l∗>, which is called the
child task, whereas ti and tj are called father tasks. Here, both b∗ and e∗ are computed
according to Definition 3.10. l∗ = li + lj − d(ti, tj).

As illustrated in Figure 3(a), two tasks ti = <1, 8, 4> and tj = <5, 11, 5> do not
satisfy each other. d(ti, tj) = 3. b∗ = 4, e∗ = 10. After a combination of them, a novel
task tij is generated and t = <4, 10, 6>. In Figure 3(b), two tasks ti = <2, 9, 4> and
tj = <3, 11, 3> are overlapping and ti satisfies tj . After a combination of them, we
get a novel task t = <2, 9, 4> where d(ti, tj) = 3 and l∗ = 4. Figure 3(c) shows two
overlapping tasks ti = <2, 9, 3> and tj = <3, 12, 5>. tj satisfies ti. After a combination
of them, we get a novel task tij and t = <3, 11, 5> where d(ti, tj) = 3 and l∗ = 5. In this
article, we regard the value of data sharing of sampling tasks as a metric to measure
data sharing.

3.3. The Complexity Analysis of the Joint Optimization Problem

To make it clear, we first introduce the definition of maximum directed Hamilton path
(MAX-DHP), which has been proved to be an NP-complete problem [Du et al. 2012].
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Fig. 4. MAX-DHP is transformed to the computation of a minimal volume of sampled data.

We then prove that the optimization problem is NP-hard by the transformation from
MAX-DHP.

Definition 3.12 (MAX-DHP). Given a complete directed graph and a distance func-
tion, find a Hamiltonian path with the maximum total distance. (A Hamiltonian path
is a simple path that passes through each vertex exactly once.)

LEMMA 3.13. Given a sampling task set T with |T | > 2, the computation of the
minimal volume of sampled data is NP-complete.

PROOF. Assume that there is a sampling interval set � satisfying the requirements
of tasks in T . Intervals in � are sorted in the ascending order of the begin time and
i = 1, 2, . . . , |�|.

First, if � is the optimal solution, intervals in � must not be overlapping. Then, we
check each interval and determine whether it can be removed and � still satisfies the
left tasks. If any interval in � cannot be removed, the solution � can be proved to
be optimal. The process of verifying can be completed in polynomial time. Thus, the
computation of the volume of sampled data is an NP problem.

Second, we construct a directed Hamilton graph, which is used to transform MAX-
DHP to the optimization problem. The construction procedure contains two steps:

—Step 1: For any pair of tasks t1 = <b1, e1, l1> and t2 = <b2, e2, l2>, if they are
overlapping and b1 < b2, then a directed edge, pointing to t2, is constructed. The
weight of the edge equals the value of data sharing (i.e., d(t1, t2)). If they are not
overlapping, then the weight of the edge is 0. It is obvious that the interval length
li for ti can be described as li = d(ti, ·) + l̂i, where d(ti, ·) stands for the data sharing
between ti and other tasks. As illustrated in Figure 4(a), iteratively repeat the step
until all tasks have been checked and the directional graph G is constructed.
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—Step 2: Given a maximal Hamilton path th1 , th2 , . . . , thn in graph G, the length of the
directed Hamilton path p(th1 , . . . , thn) in Figure 4(a) is calculated as follows:

p(th1 , . . . , thn)

=
n−1∑
i=1

d(thi , thi+1 )

= p(th1, . . . , thn−1 ) + (lthn
− l̂thn

)
= · · ·
=

n∑
i=1

lthi
−

n∑
i=1

l̂thi

=
n∑

i=1

lthi
− p̂(th1 , . . . , thn).

(10)

As illustrated in Figure 4(b), p̂(th1 , . . . , thn) is the total amount of sampled data for the
task set. So the MAX-DHP problem can be transformed to the optimization problem.

As the entire process is completed in polynomial time, Lemma 3.13 is proved.

COROLLARY 3.14. Given a sampling task set, the problem of scheduling sampling
intervals of tasks is NP-complete.

THEOREM 3.15. When 0 < r < k, the joint optimization problem is NP-hard.

PROOF. In a k-coverage and r-redundant sensor network, r out of k candidate nodes
are used to execute a sampling task. Consider a special case—for example, r = 1, and
k = 2. In this situation, the problem of computing minimal volume of sampled data can
be transformed to the joint optimization problem.

Given a task set T with T �= ∅, if there is an optimal solution to compute the volume
of sampled data and return an interval set �, then divide � into two subsets �1 and
�2 such that each satisfies T1 and T2 (T = T1 ∪ T2), respectively. The procedure can
be finished in polynomial time. However, the computation of the minimal volume of
sampled data, as proved in Lemma 3.13, is NP-complete. Thus, the special case of the
joint optimization problem is NP-hard. In general, this joint optimization problem is at
least as difficult as the special case. Therefore, when 0 < r < k, the joint optimization
problem is NP-hard.

4. COMBINE: MAXIMIZING DATA SHARING BETWEEN OVERLAPPING TASKS

In this section, we first present the COMBINE algorithm, which maximizes data shar-
ing among overlapping tasks. We then prove the bound of the algorithm by theoretical
analysis rigorously. COMBINE is the crucial ingredient of our solution.

Let T denote a nonempty task set. If |T | = 1, the amount of sampled data is deter-
mined solely. If |T | > 1, a quad q = <ti, tj, tij, d(ti, tj)> is maintained for the combination
of the overlapping tasks ti and tj . Here, ti and tj are father tasks, and the child task is
tij . d(ti, tj) is the value of data sharing between ti and tj .

Our basic idea is to schedule all tasks in T by iteratively combining the task pair that
has the maximal value of data sharing until there are no overlapping tasks in T . The
whole procedure includes three major steps. First, it computes the combination of all
overlapping tasks and gets a quad list Q. Second, a quad q ∈ Q, q = <ti, tj, tij, d(ti, tj)>
where d(ti, tj) is maximal is found. Third, original tasks ti and tj are replaced by the
novel task tij in the task set T . Fourth, repeat the preceding steps until no overlapping
tasks exist. Algorithm 1 presents details and returns a task set that has no overlapping
sampling tasks.
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Fig. 5. Process of COMBINE for overlapping tasks.

ALGORITHM 1: COMBINE(T )
Require: A task set T and T �= ∅. A quad list Q and Q = ∅.

1: sort tasks in T in the descending order of end time.
2: Q← PRE PROCESSING(T ).
3: sort quads in Q in the descending order of value of data sharing.
4: while |T | > 1 and T contains overlapping tasks do
5: ti = Q(0).ti, tj = Q(0).tj , tij = Q(0).tij .
6: insert tij into T in the order of end time.
7: remove ti and tj from T and quads that include ti or tj from Q.

return T .
8: function PRE PROCESSING(T )
9: for each task ti in T do

10: for each task tj ∈ T − {ti} do
11: if ti is overlapping with tj then
12: a quad q is generated with q = <ti, tj, tij, d(ti, tj)>.
13: Q←Q

⋃{q}.
return Q.

Algorithm 1 performs an iterative operation. Lines 1 through 3 initialize a quad list
Q and sort the quad list in the descending order of d(ti, tj). It consumes O(n2) memory to
maintain the quad list. The time complexity is O(n2) due to the computation of maximal
value of data sharing. Lines 4 through 7 find a task pair that has the maximal value
of data sharing in the task set T and then update T and Q. As shown in Figure 5,
three tasks are notated by t1 = <0, 5, 4>, t2 = <1, 7, 4>, and t3 = <4, 9, 2>. First,
we compute the length of the overlapping intervals and find that t1 and t2 have the
maximal value of data sharing d(t1, t2) = 4. Then, t1 and t2 are selected to construct a
novel task t12 = <1, 5, 4>. Second, remove t1 and t2 from T and add t12 to T . We get a
novel task (i.e., <1, 6, 5>) after combining t12 and t3. Thus, the final sampling interval
is [1, 6], and the amount of sampled data is 5.

Note that both the space complexity and time complexity of Algorithm 1 are O(n2).
Consider that the memory resource is rare for a WSN. Algorithm 1 costs O(n2) space
complexity because of maintaining a quad list. To address this problem, we further
propose Algorithm 2, whose space complexity is O(n) and time complexity is O(n2).
It exhibits the same performance as Algorithm 1 but significantly reduces the mem-
ory consumption. Algorithm 1 is proved to be a 2-factor approximation algorithm by
Theorem 4.5. Before presenting Theorem 4.5, we first present Lemma 4.1 and Prop-
erty 4.2, which will be used in the proof of Theorem 4.5.
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ALGORITHM 2: COMBINE 2(T )
Require: A task set T and T �= ∅.

1: sort tasks in T in the descending order of end time.
2: while |T | > 1 do
3: find a task pair <ti, tj> that has the maximal value of data sharing.
4: if d(ti, tj)==0 then
5: return T .
6: insert a novel task tij into T in the descending order of end time.
7: remove ti and tj from T .
8: return T .

LEMMA 4.1. For a nonempty task set T , if we select two tasks ti and tj by using
Algorithm 1, a novel task tij is generated. For another task tk and tk ∈ T , we have
d(ti, tj) ≥ max{d(ti, tk), d(tj, tk)} and d(tij, tk) ≤ min{d(ti, tk), d(tj, tk)}.

PROOF. Note that ti and tj are the selected candidate tasks by Algorithm 1. For a task
set T , the current maximal value of data sharing is d(ti, tj). Without loss of generality,
we assume that d(ti, tk) ≥ d(tj, tk).

First, there exists a task notated by tk. tk ∈ T , tk �= ti, tk �= tj . If d(ti, tj) < d(ti, tk), then
the value of data sharing between tasks ti and tj is not the maximal. It is a contradiction
because we compute the current maximal value of data sharing by Algorithm 1. Thus,
we have d(ti, tj) ≥ d(ti, tk).

Second, if a tij is generated by the combination of tasks ti and tj , then d(tij, tk) =
d(ti, tj, tk). Since d(ti, tj, tk) ≤ d(tj, tk) is always satisfied, we have d(tij, tk) ≤ d(tj, tk).

LEMMA 4.2. The value of data sharing between two overlapping tasks, according to
Algorithm 1, is monotone nonincreasing.

PROOF. Consider a nonempty task set T and the overlapping tasks ti and tj . ∀tk ∈ T ,
d(ti, tj) ≥ d(tij, tk) is always established according to Lemma 4.1. Then we can prove
Property 4.2 by using the method of mathematical induction, as we identify a task pair
with the maximal value of data sharing from the task set T in each combination step.
If ti and tj are the current choice, it means that other task pairs cannot provide more
data sharing than ti and tj . After the combination step, if a further task pair is tx and
ty, we have d(tx, ty) ≤ d(ti, tj) according to Lemma 4.1. Thus, Property 4.2 is proved.

Definition 4.3 (Compact Model of a Task). For a task ti = <bi, ei, li>, let t̃i = <b̃, ẽ, l̃ >
denote its compact model such that ⎧⎨⎩ b̃ = bi

ẽ = ei
l̃ = ei − bi

. (11)

Definition 4.4 (Compact Model of a Task Set). For a task set T = {t1, . . . , tn} where
ti = <bi, ei, li> and 1 ≤ i ≤ n, its compact model consists of ϕ compact tasks that are
not overlapping each other. These compact tasks t̃1, t̃2, . . . , t̃ϕ have the same interval
length δ such that{

δ ≤ min{l1, l2, . . . , ln}, δ is a positive constant.
ϕ = min{x|x·δ ≥ ∑n

i=1 li, x is a positive integer}. (12)

THEOREM 4.5. Algorithm 1 is a 2-factor approximation algorithm to compute the
minimal volume of sampled data.
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Fig. 6. Typical example of the approximate result by using Algorithm 1 versus the optimal result.

PROOF. For a nonempty task set T , if |T | = 1, Algorithm 1 returns the only one
sampling task that is the optimal result.

When |T | > 1, assume that Ii and Ij are the corresponding sampling intervals of
tasks ti and tj , respectively. ti and tj are overlapping. IT ′

are the sampling intervals of
a task set that is notated by T ′ and T ′ = T − {ti, tj}. Considering a task ti, in the worst
case, Algorithm 1 returns an interval length |Ii�Ij�IT ′ | as illustrated in Figure 6(a).
However, there exists an optimal algorithm that derives an interval length |Ii�IT ′ | as
illustrated in Figure 6(b). Therefore, we have

GREEDY(T )
OPT(T ) = |Ii � Ij � IT ′ |

|Ii � IT ′ |
= ϕ · δ + |Ii � Ij |

ϕ · δ + |Ii|
≤ 1 + |Ij |

ϕ · δ + |Ii|
≤ 1 + ϕ · δ

ϕ · δ + δ≤ 2.

(13)

Here, δ ≤ d(ti, tj).

A typical example is shown in Figure 6. Algorithm 1 returns the interval length 2ϕ·δ
where δ < d(ti, tj), whereas the optimal result is ϕ·δ + ε. Thus,

lim
ε→0,ϕ→∞

ϕ·δ + ϕ·δ
ϕ·δ + δ + ε

= 2. (14)

Our algorithm performs better when a task is overlapping with others tightly. Em-
pirical study in Section 6 has verified this conclusion.

5. APPROXIMATION ALGORITHMS FOR THE JOINT OPTIMIZATION PROBLEM IN WSNS

In this section, three algorithms are presented for the joint optimization problem. The
first is a random algorithm that allocates the sampling tasks randomly. The second is
a pruning algorithm that first allocates a task to all candidate nodes and then removes
it from some of the candidate sensor nodes by the value of data sharing. The third
is a 2-factor approximation algorithm that computes the volume of sampled data by
iteratively combining overlapping tasks.

For a task set, the insight of the random method is to randomly identify r out of k
candidate sensor nodes. This method is simple and easily performed on a sensor node.
However, it neglects data sharing among tasks and brings a wealth of unnecessary
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ALGORITHM 3: PRUNE(T , S, k, r)
Require: A task set T and T �= ∅. A sensor node set S and S �= ∅. 1 ≤ i ≤ m. r ≤ k.

1: while T �= ∅ do
2: allocate a task t, t ∈ T to k candidate sensor nodes.
3: compute the value of data sharing d(t, ·) between t and any other tasks on a sensor node.
4: if no sampling task is overlapping with t then
5: randomly allocate t to one candidate sensor node.
6: else
7: remove the task t from a candidate sensor node when t has the smallest value of data

sharing with other tasks on the node.
8: t.count = t.count − 1.
9: if t.count==r then

10: remove t from T .
11: COMBINE(Ti) for each task subset Ti .

sampled data. This method consumes much energy of a sensor node and damages the
quality of communication in WSNs as well.

5.1. Maximizing Data Sharing of Tasks According to the Pruning Method

We notice that the sampled data can be shared in the overlapping time region. There-
fore, we consider allocating tasks via the pruning operation, which removes unreason-
able allocation choices repeatedly. The entire process contains three major steps. First,
we allocate tasks to all candidate sensor nodes. In other words, if a task is detected
by k sensor nodes, it is allocated to the k candidate sensor nodes. Second, compute
the maximal value of data sharing between a task and other overlapping tasks. Then
remove a task from a sensor node where the task has the smallest value of data sharing
with other tasks until it is allocated to r sensor nodes. Finally, compute the total length
of sampling intervals. Algorithm 3 describes more details.

In Algorithm 3, lines 1 through 3 allocate a task to its k candidate sensor nodes. Lines
4 through 10 check whether a task has been removed from k−r candidate sensor nodes.
Line 11 computes the final sampled data for each sensor node using Algorithm 1. In
the worst case, if Algorithm 1 is used to compute the volume of sampled data, the time
complexity of Algorithm 3 is O(n2) and the space complexity is O(n2). If Algorithm 2 is
used to compute the sampling time, then the space complexity of Algorithm 3 is O(n)
because each node does not have to maintain the data sharing between any pair of
overlapping tasks.

Algorithm 3 is a greedy algorithm. A typical example is shown in Figure 7. Here,
k = 3 and r = 2. The sensor node set is notated by S, and S = {s1, s2, s3}. The task
set is notated by T , and T = {t1, t2, t3, t4}. As illustrated in Figure 7, the left panel
demonstrates the computation of data sharing by Algorithm 3 and the optimal method.
Four rectangles in the right panel stand for the tasks in the left panel. The pruning
method first allocates all sampling tasks to candidate nodes and then removes the
tasks that have the smallest volume of data sharing with other tasks (indicated in the
dotted polygon). Finally, Algorithm 3 returns the total length of the sampling intervals,
8l as shown in Figure 7(a), whereas the optimal result is 6.5l as shown in Figure 7(b),
because our pruning procedure is not optimal in each round. This motivates us to
propose Algorithm 4, which allocates tasks according to the COMBINE operation and
can be optimal in each round.

5.2. CATS: Maximizing Data Sharing of Tasks According to the COMBINE Operation

The COMBINE operation schedules sampling tasks for maximizing data sharing in
each round. Since it has a good performance, we provide a solution that allocates

ACM Transactions on Sensor Networks, Vol. 12, No. 4, Article 29, Publication date: September 2016.



29:16 Y. Zhao et al.

Fig. 7. Typical example of the approximate result by using Algorithm 3 versus the optimal result. Four
tasks t1, t2, t3, and t4 in the left panel are represented by four rectangles in the right panel, respectively.
Tasks in the dotted polygon will be removed from nodes due to the pruning process.

ALGORITHM 4: CATS(T , S, k, r)
Require: A task set T and T �= ∅. A sensor node set S and S �= ∅. r ≤ k.

1: while there exists overlapping tasks in T do
2: identify a task pair <t1, t2> from T that has the maximal value of data sharing.
3: combine t1 and t2 and notate the resultant task by t12.
4: remove t1 and t2 from T .
5: add t12 into T .
6: while T is not an empty set do
7: randomly identify a task t, t ∈ T .
8: if t is not an original task then
9: identify the original tasks that generate t after the process of COMBINE, and allocate

them to r sensor nodes.
10: else
11: allocate t to r sensor nodes.

tasks and computes the volume of sampled data by using the COMBINE operation.
As illustrated in Figure 2, a task t0 is detected by three sensor nodes, but only two of
them are identified to perform it. Assume that task t0 is overlapping with three tasks
t1, t2, and t3 such that d(t0, t1) > d(t0, t2) > d(t0, t3), and t1, t2, and t3 have already been
allocated to s1, s2, and s3, respectively. When k = 3 and r = 2, we should allocate t0 to the
sensor nodes s1 and s2. The method includes three major steps. First, maintain a global
quad list in which each quad stands for a COMBINE operation of two overlapping
tasks. Second, iteratively identify a quad that has the maximal value of data sharing of
overlapping tasks in the global quad list. Then allocate the overlapping tasks to r out
of k candidate sensor nodes. Finally, update the quad list and the task set. Algorithm 4
presents the method in detail. In Algorithm 4, lines 1 through 5 present the combination
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Fig. 8. Illustrative example for the allocation of tasks by combining overlapping tasks in each round.

of the overlapping tasks. Lines 6 through 11 ensure that all tasks are allocated to r
different sensor nodes even though some tasks are not overlapping with others. The
time complexity is O(n2), and the space complexity is O(n).

For example, let T = {t1, t2, t3, t4} denote a task set where t1 = <0, 3, 3>, t2 =
<2, 6, 2>, t3 = <3, 8, 4>, and t4 = <4, 8, 4>. There are three sensor nodes s1, s2,
and s3. Here, k = 3 and r = 2. The task sets of these sensor nodes are marked as
T1, T2, and T3 with T1 = T2 = T3 = {t1, t2, t3, t4}. We then maintain a quad list for each
sensor node (i.e., Q = {q12, q23, q24, q34}) and sort Q in the descending order of the value
of data sharing. When Algorithm 4 is used to allocate tasks, the task pair <t3, t4> is
combined in the first round due to d(t3, t4) = 4. As illustrated in Figure 8(a), tasks t3
and t4 should be allocated to sensor nodes. A novel task t34 = <4, 8, 4> is generated.
We further remove tasks t3 and t4 from T1, then add t34 into T1. After t3 and t4 are
allocated, all quads containing tasks t3 and t4 will be removed from the quad list (i.e.,
Q = {q12}). Thus, tasks t1 and t2 should be combined and allocated to sensor nodes. As
indicated in Figure 8(b), after two rounds of task combination, tasks in T are finally
allocated to the sensor nodes in S, and the volume of sampled data has been computed.

THEOREM 5.1. Algorithm 4 is a 2-factor approximation algorithm for computation of
the volume of sampled data.

PROOF. When r = k, the allocation solution is deterministic. We can allocate tasks to
all of its candidate sensor nodes. Algorithm 4 means to run Algorithm 1 on each sensor
node for its allocated tasks. It always returns a 2-factor approximate result for each
sensor node. Algorithm 4 is thus a 2-factor approximation algorithm.

When 1 ≤ r < k, Algorithm 4 selects a task pair with the maximal value of data
sharing from the task set repeatedly. Algorithm 4 can be transformed to Algorithm 1.
The process of transformation can be described as follows:

—Compute the value of data sharing between overlapping tasks that may be allocated
to a same node.

—For any two tasks that are not allocated to a same node, we set its value of data
sharing to negative infinity.

—If overlapping tasks have been allocated to a node, the data sharing between them
will be adjusted to negative infinity.

—If a task has been allocated to r nodes, data sharing between it and other nodes will
be set to negative infinity.
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Fig. 9. Illustrative example of transformation from Algorithm 1 to Algorithm 4 by combining the overlapping
tasks that have the maximal value of data sharing in each step. Here, k = 3 and r = 2.

Algorithm 1 is then performed on the task set until there are no overlapping tasks.
We get the minimal volume of sampled data. Meanwhile, we get a sampling interval
set � in which none of intervals are overlapping. An interval I in � satisfies several
sampling tasks. Thus, we get several sets of tasks. Since a task has been allocated to r
nodes, these sets of tasks are the result of task allocation. Therefore, the computation
of the volume of sampled data can be solved by running Algorithm 1 repeatedly. The
performance of Algorithm 1 has been proved by Theorem 4.5 and returns a 2-factor
approximate result of the volume of sampled data. Thus, Algorithm 4 is a 2-factor
approximation algorithm.

To be clear, we provide an example to illustrate the process of transformation. As
shown in Figure 9, assume that there are five tasks t1, . . . , t5 (as indicated by cycle)
that should be allocated to five nodes s1, . . . , s5. {t1, t2, t3} are detected by s1. Similarly,
{t2, t3, t4}, {t3, t4, t5}, {t4, t5, t1}, and {t5, t1, t2} are detected by nodes s2, s3, s4, and s5, re-
spectively. Here, k = 3 and r = 2. As illustrated in Figure 9(a), we construct a weighted
graph where a vertex stands for a task. If two tasks are overlapping, then a weighted
edge exists. The weighted value represents the value of data sharing. The value in
the rectangle indicates the number of nodes to which the task has been allocated. The
overlapping tasks that have the maximal data sharing are allocated to a node. Then,
the data sharing between them is set to negative infinity (indicated by the dotted line).
If a task has been allocated to r sensor nodes, the task is removed from the task set.
Without loss of generality, the novel tasks generated from the COMBINE operation
are not demonstrated. For example, in Figure 9(b), we find that tasks t2 and t4 have
the maximal value of data sharing: 0.5. Then, they are allocated to node s2, and the
data sharing between them is set to negative infinity. As illustrated in Figure 9(d),
when task t4 has been allocated to s2 and s3, the edges between it and other nodes are
removed. When the sampling intervals of tasks are scheduled to achieve the maximal
data sharing, these tasks are eventually allocated to and sampled by the nodes. Since
the process of task combination will generate novel tasks, novel vertices will added to
the graph, but this will not impact the performance of Algorithm 4.
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Fig. 10. Output power can be adjusted to realize the k-coverage network in the testbed.

6. PERFORMANCE EVALUATION

In this section, we first introduce our experimental environment and settings. Then,
we evaluate the effectiveness of our proposed algorithms by using a physical testbed
containing 50 WSNs. Finally, TOSSIM, the widely used simulation tool, is used to
verify the scalability of our method.

6.1. Experimental Environment and Settings

We evaluate the effectiveness of our proposed algorithms on a physical testbed of WSNs.
As indicated in Figure 10, this testbed contains 50 WSNs. The distance between two
adjacent sensor nodes is about 20cm. In experiments, we construct different k-coverage
networks by adjusting the transmitting power of nodes. The parameter k becomes large
when the output power of nodes is increased. By default, the output power is set to the
lowest level, and the transmission range is only about tens of centimeters. All nodes
operate on the same channel.

With such settings, although a number of nodes locate in the same collision domain,
the packet loss rate observed in the experiments is less than 0.1%. This occurs because
the nodes in the same collision domain access the wireless channel for transmission
based on the MAC protocol, and packet loss caused by severe interference will not
happen [Demirkol et al. 2006; Bharghavan et al. 1994].

Since the WSN is densely deployed, any two nodes can set up a wireless link by at
most three hops. The proposed algorithms are implemented in a centralized manner
that is widely used in actual systems [Mo et al. 2009; Jiang et al. 2009; Sheng et al.
2007; Xiang et al. 2011]. We use the left-top node (as highlighted by a red rectangle
in Figure 10) as the sink node that allocates a task set to other nodes and the right-
bottom node as the collection node (as indicated by the green rectangle in Figure 10)
that collects all sampled data. Transmitted packets are counted to indicate the re-
quired sampled data, whereas received packets are collected to demonstrate the actual
collected data.

The value of k varies from 2 to 8, which is reasonable and always used in the prac-
tical WSN systems [Mao et al. 2013; Huang and Tseng 2003]. We construct a unit of
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Fig. 11. Comparison of the number of transmitted packets by varying the number of tasks in (a) and the
interval length in (b). Energy consumption is compared by varying the number of time slots in (c) and data
loss rate in (d).

continuous data by sampling temperature 5 times per second and send the data by
using a packet. The interval length of a sampling task is randomly generated and not
greater than 10. To be specific, the begin time of a sampling task is evenly distributed
in the time slot [0, 50]. We run each algorithm 10 times and use the average value of
these results as the final result. To be clear, m, n, and l represent the cardinality of the
sensor node set and the task set, and the length of a sampling interval, respectively.

6.2. Performance of Data Sharing on a Sensor Node

First, we evaluate the performance of our Algorithm 1, denoted by COMBINE, against
the state-of-the-art method [Fang et al. 2013], named GA here. GA is an approxima-
tion algorithm for computing the amount of sampled data on a single sensor node.
Meanwhile, GA can derive the optimal scheduling algorithm, denoted by DP, using the
dynamic programming technique on the condition that all tasks have the same interval
length. In this experiment, the interval length of each sampling task is consistently
set to 5, and the window size of each task varies from 5 to 15.

Figure 11(a) and (b) illustrate the number of transmitted packets when using COM-
BINE, GA, and DP by varying the cardinality of a sampling task set (Figure 11(a)) or
the interval length of a sampling task (Figure 11(b)). Specifically, the interval length
of a sampling task is set to 5 in Figure 11(a), whereas the cardinality of each task set
is fixed to 30 in Figure 11(b). It is easy to observe from Figure 11(a) and (b) that the
number of transmitted packets increases with both the growth of the number of tasks
and the interval length. However, COMBINE performs better and returns a smaller
number of transmitted packets than GA. This happens because our algorithm com-
bines overlapping tasks that have the maximal value of data sharing for each step.
Thus, each step is the current optimal choice. Considering that GA schedules the sam-
pling intervals of tasks based on the end time of a task, it cannot ensure that each
scheduling choice is optimal. This is the reason COMBINE outperforms GA. Mean-
while, Figure 11(a) and (b) indicate that COMBINE achieves a 2-factor approximation
result versus the optimal result. This verifies the correctness of Theorem 4.5.

In Figure 11(c), we run the COMBINE and GA methods on two sensor nodes to test
their energy usage. The terminal voltage of batteries equipped for a sensor node is
measured every 100 time slots. The initial value is 2.864V. It is apparent that while
the terminal battery voltage decreases due to the energy consumption, COMBINE
consumes less energy than GA. This is because COMBINE reduces more unnecessary
sampled data than GA. Since a sensor node uses up much more energy when listen-
ing, receiving, and sending data, COMBINE greatly cuts down energy consumption
and prolongs the lifetime of the entire WSN. Precisely, COMBINE decreases energy
consumption by 4.85% per slot on average. In Figure 11(d), we test the data loss rate
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Fig. 12. Comparison of the number of transmitted packets by varying the number of tasks in (a) and the
value of r in (b). When the scale of tasks is limited, the number of transmitted packets is compared by varying
the interval length of tasks in (c) and the value of r in (d).

of different methods during data transmission by changing the number of tasks on a
single sensor node. We observe that the data loss rate increases with the growth of
the number of tasks. We are delighted to see that COMBINE achieves a smaller data
loss rate than GA. Precisely, COMBINE decreases energy consumption by 4% per slot
on average. Here, a time slot is a period of 50 seconds. Since a wireless sensor node
works for several months, such improvements are appreciable and worthy of being
exploited. Moreover, GA is specifically designed for the schedule of sampling intervals.
It is unknown how to use GA for task allocation. Adopting a random strategy of task
allocation for 300 tasks in a k-coverage and r-redundant network with k = 5 and r = 2,
GA consumes more energy and leads to a higher data loss rate than our solution by
more than 35% and 30%, respectively, to poorly exploiting data sharing among tasks.
Such benefit becomes more obvious when the number of tasks increases. The reduction
of redundant sampled data relieves the workload of intranetwork communication and
decreases transmission delay and congestion by using COMBINE.

6.3. Performance of Data Sharing Across WSNs

In this section, we verify the performance of the naive method which allocates tasks
randomly, Algorithm 3 and Algorithm 4 which are represented by RANDOM, PRUNE,
and CATS, respectively hereinafter.

In Figure 12(a), we vary the number of sampling tasks in WSNs to compare the
number of transmitted packets. By default, k is set to 5 and r is set to 2. Figure 12(a)
shows that the number of transmitted packets increases with the number of tasks.
Moreover, PRUNE and COMBINE significantly decrease unnecessary sampled data
more so than RANDOM, especially when the number of tasks grows. Precisely, when the
cardinality of a task set is larger than 600, the number of transmitted tasks produced
by COMBINE seems to be half of that brought about by RANDOM. In Figure 12(b), we
compare the number of transmitted packets by varying r from 2 to 6 under the setting of
k = 8. It is obvious that both PRUNE and CATS reduce more transmitted packets than
RANDOM. Another observation is that the advantage of PRUNE and CATS becomes
less significant with the growth of r, as when r increases, more candidate sensor
nodes are involved to be identified to execute a task. The randomness of RANDOM is
weakened. Particularly, when r equals k, RANDOM provides a deterministic solution
that shares the same performance with PRUNE and CATS.

It is difficult to derive an effective optimal solution for the joint optimization problem.
However, when the scale of tasks is small, we can find the optimal result by using a
brute-force method. To evaluate the performance of our method rigorously, we compare
the number of transmitted packets on each method by varying the number of tasks
and the value of r. In Figure 12(c), we display three groups of tasks, each of which has
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Fig. 13. WSN with a general topology is deployed by using 22 nodes. The yellow star represents the collection
node, whereas the red stars represent other nodes in the network; some of their enlarged pictures are shown
as examples. The comparison of sampled data is shown by adopting different strategies of data sampling
when the number of tasks varies in (a) and r varies in (b).

five tasks. The interval length of a task is set to 1/4, 1/2, and 3/4 of its window size in
groups 1, 2, and 3, respectively. These tasks appear in time slot [0, 20] randomly. Here,
k = 5, r = 2. The optimal method is denoted by OPTIMAL. It is clear that the number of
transmitted packets increases with the expansion of the interval length. PRUNE and
CATS perform better than RANDOM and are close to the optimal allocation solution
(i.e., OPTIMAL). This confirms the conclusion of Theorem 5.1 again, which clarifies that
our greedy allocation algorithm is a 2-factor approximation of the optimal solution. In
Figure 12(d), we set k = 8 and modify the value of r from 2 to 6. A quick conclusion
drawn from the figure illustrates that the number of transmitted packets increases
with the growth of r. Under such a condition, CATS achieves a greatly smaller number
of transmitted packets than twice of that produced by the optimal solution. This verifies
the conclusion of Theorem 5.1 again.

Additionally, we deploy a real WSN that consists of 22 nodes and is built in a general
topology. As illustrated in Figure 13(a), the yellow star represents the collection node,
and the red stars represent other nodes. Some enlarged pictures of those red stars are
shown as examples. The sampling tasks are produced under the settings of Section 6.1.
Moreover, the output power of each a sensor node is adjusted to be a high level to build
a coverage network. As illustrated in Figure 13(b) and (c), we compare the amount of
sampled data to evaluate the performance of different strategies of data sampling. It
is obvious that CATS and PRUNE perform better than RANDOM when we vary the
number of sampling tasks or the length of a sampling interval for a task. This is noted
primarily because they reduce unnecessary sampled data by adopting effective data
sharing strategies. It is noting that the real WSN is built in a more general topology
than the grid topology we use in the testbed. The result thus shows that our strategies
of task allocation and scheduling of sampling intervals (i.e., CATS and PRUNE) are
effective to reduce the unnecessary sampled data.

In addition, a large amount of sampled data definitely leads to server delay and
congestion in WSNs, degrading the quality of data transmission as a result. In Fig-
ure 14(a), we compare the data loss rate of different methods by changing the number
of nodes in WSNs. It is obvious that the data loss rate becomes larger when the scale
of network increases. But PRUNE and CATS significantly derive the smaller data loss
rate than RANDOM. This verifies the benefits of our solution on the improvement of
the quality of data transmission by cutting down the unnecessary sampled data. As
well, we conduct simulations for evaluating the scalability of our proposed algorithms
for a large-scale WSN. These simulations are implemented with TOSSIM, which is a
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Fig. 14. Comparison of the data loss rate in the testbed is presented by varying the number of nodes in (a).
In addition, the number of received packets is compared by varying the number of nodes in (a), as well as
the data loss rate in (b), for large-scale WSNs simulated in TOSSIM.

Fig. 15. Parameter settings in the simulations by using TOSSIM. The left column shows the parameters
that can be used to configure a grid WSN, the middle column is the value, and the right column is the notions
of these parameters.

widely used simulation tool for WSNs [Levis et al. 2003]. We construct a grid network,
and the settings of the simulated network are listed in Figure 15, which are widely
accepted [Sohrabi et al. 1999]. As illustrated in Figure 14(b), we compare the number
of received data by varying the scale of the network. We observe that CATS brings
the smallest amount of received data when the scale of the network grows, as CATS
reduces more unnecessary sampled data than PRUNE and RANDOM. We note that
PRUNE brings more received data than RANDOM in a large wireless sensor network,
which includes more than 100 wireless sensor nodes, as RANDOM causes more severe
loss of data than PRUNE when the scale of the network is large. Although RANDOM
produces the largest volume of sampled data, the received data by using RANDOM
may be smaller than PRUNE because of data loss. As illustrated in Figure 14(c), the
data loss rate in both CATS and PRUNE is much smaller than that in RANDOM. This
happens when the number of transmitted data in CATS and PRUNE is smaller than
that in RANDOM. In summary, CATS is more suitable to be deployed for a large-scale
WSN, as it always performs much better than RANDOM.

ACM Transactions on Sensor Networks, Vol. 12, No. 4, Article 29, Publication date: September 2016.



29:24 Y. Zhao et al.

7. DISCUSSION

We have proposed methods of task allocation and scheduling of sampling intervals
and have given much theoretical analysis about their performance. As the question is
general, we aim to provide a universal solution that does not rely on the details of the
network. The sink node runs CATS and gets the strategy of task allocation in a WSN.
It then allocates the sampling tasks to the sensor nodes. The allocation message will
be added into packets and disseminated to sensor nodes with sampling tasks together.
Compared to the volume of sampled data of sampling tasks, such expenditure on the
allocation solution is small. Meanwhile, as illustrated in Section 6.3, adopting the
strategy of task allocation can reduce redundancy of sampling data by more than 30%.
Therefore, it is worthy to trade few expenditures for appreciable data sharing [Liu
et al. 2012, 2013]. Additionally, other details such as protocols of communication and
data routing do not impact performance of the proposed algorithms. We do not adopt
optimization on such communication protocols or routing strategy. We aim to propose
an effective solution for the joint optimization problem.

The allocation of tasks involves assigning each task to r out of k candidate sensor
nodes. The current allocation scheme seeks to fully exploit the benefits of data shar-
ing among tasks. In reality, there still exist other important constraints that can be
exploited to improve the proposed allocation schemes. Note that each sensor node is
resource constrained (i.e., it has limited computation and memory resources). If a sen-
sor node has been allocated many sampling tasks, it may not handle all tasks in a
timely manner and may exhaust the energy early. This problem cannot thus be simply
addressed by limiting the number of tasks a sensor node is carrying, because although
different nodes have the same amount of sampling tasks, the real workload of sensor
nodes may have a considerable difference due to the data sharing strategy. Therefore,
contemporary task allocation schemes can be more practical if we consider the load bal-
ance among sensor nodes. An effective method is to set a threshold for the constrained
resource. Each allocation step ensures that the threshold value is not exceeded. Algo-
rithms 3 and 4 are flexible to adjust for this tactic. When the limited resource changes
dynamically, the allocation problem will be more difficult to solve. We leave this as our
future work.

In this article, we aim to minimize the sampled data for a sampling task set by coop-
eratively allocating tasks and scheduling sampling intervals of tasks that are allocated
to a sensor node. Our proposed algorithms are orthogonal to the topology of a network.
In fact, the information of a network can be utilized to improve the performance of our
algorithms in many respects. For example, we can divide the sampling intervals into
several segments for a k-coverage network if these segments can be integrated into the
complete task finally on the sink node. These sampling segments can be allocated to the
sensor nodes, which will help to balance the sampling workload on sensor nodes in our
proposals. However, embedding the network information into our solutions introduces
arduous problems, such as task dividing and data fusion. We leave this as our future
work as well.

8. CONCLUSION

Many applications of WSNs pursue to perform a set of interval sampling tasks for
decision making. In this article, we focus on minimizing the volume of sampled data
in a k-coverage and r-redundant WSN. The solving of this optimization problem
depends on the optimization of two subproblems: the problem of task allocation
among candidate sensor nodes and the problem of scheduling sampling intervals of
sampling tasks that are allocated to a sensor node. Since the strategy of task allocation
dominates the performance of the schedule of sampling intervals of sampling tasks,
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we jointly optimize both subproblems. Specifically, we first propose a crucial operation
for the problem, namely COMBINE, and give a rigorous bound of its performance.
Furthermore, we present our method, which allocates tasks and computes the amount
of sampled data by using CATS. The effectiveness and scalability of our proposals are
evaluated by employing a testbed and TOSSIM, respectively. The extensive empirical
study indicates that our method reduces the amount of sampled data significantly,
decreases the energy consumption of a wireless sensor node, and improves the quality
of communication apparently due to the decrease of data loss rate.
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